(x-5)^2/3=64

Simple and best practice solution for (x-5)^2/3=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-5)^2/3=64 equation:


x in (-oo:+oo)

((x-5)^2)/3 = 64 // - 64

((x-5)^2)/3-64 = 0

((x-5)^2)/3+(-64*3)/3 = 0

(x-5)^2-64*3 = 0

x^2-10*x-167 = 0

x^2-10*x-167 = 0

x^2-10*x-167 = 0

DELTA = (-10)^2-(-167*1*4)

DELTA = 768

DELTA > 0

x = (768^(1/2)+10)/(1*2) or x = (10-768^(1/2))/(1*2)

x = (16*3^(1/2)+10)/2 or x = (10-16*3^(1/2))/2

(x-((10-16*3^(1/2))/2))*(x-((16*3^(1/2)+10)/2)) = 0

((x-((10-16*3^(1/2))/2))*(x-((16*3^(1/2)+10)/2)))/3 = 0

((x-((10-16*3^(1/2))/2))*(x-((16*3^(1/2)+10)/2)))/3 = 0 // * 3

(x-((10-16*3^(1/2))/2))*(x-((16*3^(1/2)+10)/2)) = 0

( x-((10-16*3^(1/2))/2) )

x-((10-16*3^(1/2))/2) = 0 // + (10-16*3^(1/2))/2

x = (10-16*3^(1/2))/2

( x-((16*3^(1/2)+10)/2) )

x-((16*3^(1/2)+10)/2) = 0 // + (16*3^(1/2)+10)/2

x = (16*3^(1/2)+10)/2

x in { (10-16*3^(1/2))/2, (16*3^(1/2)+10)/2 }

See similar equations:

| 9x-3(5-2x)= | | 2x-9+4x+27=180 | | -19h+8h+3h+7h=7 | | 4(c+13)=9z-7 | | x+.07x=224 | | -2+8(x-5)=15x+5-7x | | 19h+8h+3h+7h=7 | | x^2-120-7x=0 | | 7*x-2(2*x+5)=x+4 | | 5x-(x-18)=16-72(x+15) | | -8x-12=-20 | | -4(3y+5)-6=-9(y+4)+3y | | s-18.5=-9 | | 9m+2m+4m-15m+2m=18 | | 12+5y=13 | | z^2-(1+i)z+6+3i=0 | | 4.2y=-75.6 | | y=-7/3*4-7 | | 2x-5=82 | | -12(h+6.2)=60 | | 5-7x=7x+8 | | 7x-2(2x+5)=x+4 | | 9x+x-12x-18x=20 | | -6(5k+8)= | | .25x=.40x-1 | | .3-t=10 | | 7x+8=6x+15 | | 4+-3x= | | y=-7/3*2-7 | | -2x+8x+9=3 | | 3x+x-18=180 | | 5x-1=3x+27 |

Equations solver categories